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High-Order Finite-Difference Methods 
for Poisson's Equation 

By H. J. van Linde 

Abstract. Finite-difference approximations to the three boundary value problems for 
Poisson's equation are given with discretization errors of 0(h3) for the mixed boundary 
value problem, O(h3jln hi) for the Neumann problem and 0(h4) for the Dirichlet problem, 
respectively. These error bounds are an improvement upon similar results obtained by 
Bramble and Hubbard; moreover, all resulting coefficient matrices are of positive type. 

I. Introduction. In this paper, we shall consider the solution by finite- 
difference methods of the three boundary value problems for Poisson's equation 

(1.1) -Au = f in R, 

R a bounded connected open set in the (x, y) plane with boundary C. The symbol A 
denotes the Laplace operator 

A a2/aX2 + a2/ay2. 

The Dirichlet problem for this equation is 

(1.2) 
-Au = f in R, 

u = g on C. 

It is well known that a unique solution exists under very general assumptions on R 
and the known functions f and g. 

The Neumann problem is 

(1.3) -Au = / in R, 

au/an = g on C, 

a/an denoting differentiation with respect to the outward-directed normal on C. 
From Green's first identity, it follows that f and g must satisfy the relation 

(1.4) J do + fg ds= 0. 

Again, under general assumptions, a solution, unique except for an additive constant, 
exists. 

Finally, the third (or Robin) boundary value problem can be formulated as 
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-Au-f onR, 

(1.5) au/an + au g on C1, 

u g1 on C2. 

It is assumed here that the boundary C consists of the two parts C1 and C2. We 
require that the function a be piecewise continuous on C1 with a finite number of 
discontinuities and twice piecewise differentiable. 

Further, at all points of continuity, either a = 0 (the set C1 (1)) or a _ am > 0, 
where a", is a constant (the set C1(21). We need only consider the cases where either 
C2 or C1(2) contains a nonempty subset of C, since, otherwise, we again have the 
Neumann problem; these cases provide a unique solution under general assumptions 
on R and f, g and g,. 

The most accurate finite-difference schemes to date for Poisson's equation have 
been devised by Bramble and Hubbard. Covering the region R by a square net with 
mesh width h, they formulated finite-difference analogues with an error estimate 
of 0(h4) for the Dirichlet problem [1], O(h2 iln hi) for the Neumann problem [2], 
and O(h2) for the Robin problem [3]. 

In this work, which is based upon the author's thesis [4], we shall propose a finite- 
difference analogue for the third boundary value problem with an error estimate of 
0(h3) and one for the Neumann problem that converges as 0(h' Iln hi). An 0(h4) 
approximation for the Dirichlet problem will be given, which is of positive type, 
with an error bound which is never worse than the one proposed by Bramble and 
Hubbard [1]. 

We shall cover the region R under consideration by a square net with mesh width 
h and we shall call the crossings of the net lines mesh points. We introduce a point 
set R,, consisting of all those mesh points of R whose eight nearest neighbors are 
also in R. 

The intersection points of the net with the boundary C of R make up a set C,,, 
subdivided for the third problem in C,, and C2,. Together, the mesh points of R 
which are not in R, form a set CQ*. This set may be divided into two sets C1,,* and 
C2h* for the Robin problem. The exact way in which this is done will be considered 
later. 

We have to define a suitable finite-difference approximation A,, to the Laplace 
operator A in R, and Ch* and, in the case of the Neumann and Robin problems, 
an analogue a,, for the operator a/an on Ch. From the work of Bramble and Hubbard, 
it can be inferred that, in order that the above proposed error estimates be attained, 
we need an approximation Ah to A with a truncation error of O(h4) in Rh,, O(h2) 
in Clh* and O(h) in C2,*. We shall also have to find an approximation a,, for a/an 
on Ch with a truncation error of O(h3). 

In [3], Bramble and Hubbard gave an approximation to the operator a/an with 
a truncation error of O(h2). In Section II, we shall show that an easier proof of their 
results can be given which also makes the results valid under less severe restrictions. 
Moreover, this different approach makes it possible to construct an analogue to 
a/an which can be shown to have a truncation error of O(h3), the proof of which 
under the original approach would have been prohibitive. 

In Section III, a suitable approximation to the Laplace operator for the set 'Ch* 
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will be derived with a truncation error of 0(h2). 
In Rh, we shall use the well-known nine-point approximation to A; if (x, y) is 

a point of Rh, then 

Ah V(X, Y) = i {4[ V(x, y + h) + V(x, y-h) + V(x + h, y) + V(x- h, y)] 

(1.6) + V(x + h, y + h) + V(x + h, y-h) + V(x-h, y + h) 

+ V(x-h, y-h)-20 V(x, y)}. 

For u E C"7'(R), the inequality 

(1.7) Ahu(P) - Au(P) - AAu(P) ? - Msh4 + 0(h5) 12 30 

holds for P E Rh, using the notation 

(1.8) Mj = sup {jaiu(P)/Oxiayi-ij | i = 0, 1, ),j. 
PER 

A remark may be made on the fact that (1.7) does not hold for u E C'6'(A); the 
truncation error in that case is still of 0(h4), but the upper bound is greater than the 
one given in (1.7). 

We shall also need the inequality 
h2 

(1.9) Au(P)- Au(P) - AAu(P) < 1M5h3 

which holds for P E Rh, if u ? C(5)(R). 
In C2h*, we shall use the operator introduced by Shortley and Weller [5] for 

points like (x, y) in Fig. 1.1. 

xy + Ph 

/ x - CLh y X'Y x+h,y 

X,y-h 

FIGURE 1.1. Situation of Mesh Points Near the Boundary 

We then approximate A by 
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Ah V(X, y) = 2h 2 V(X-ah,y)+ KV(x+h, y) laI+ a) I1+a 

(1.10) + 
I 

+ dx, y + Oh) + 1_ x, y-h) 

-(+ V(X, A} 

a and (3may equal 1; if a = 3 = 1, the operator (1.10) becomes the usual five-point 
difference analogue for the Laplace operator. Of course, the orientation may be 
different fromn the one given in Fig. 1.1. Appropriate changes in (1.10) should then be 
made. 

For u E C"3(A), we have, in a point P of Ch* (or Clh* or C2h*), 

(1.11) IAhu(P) - AU(P)I < M3h. 

These operators, and the ones derived in Sections II and III, shall be used in 
Sections IV-VI to derive error estimates for the Robin, Neumann and Dirichlet 
problems, respectively. 

We shall approximate the solution of the boundary value problems (1.2), (1.3) 
and (1.5) by finite-difference methods; that is, we shall solve a set of n simultaneous 
linear equations in n unknowns. The operators by which the various differential 
operators are approximated will be chosen in such a way that the coefficient matrix 
A of the resulting system of linear equations will have a very useful property, both 
for estimating the discretization error and for actually solving the systems, the matrix 
being of positive type [6]. Generally, in problems of this type, one has to attend to 
three things; first one has to establish the convergence of the proposed method, then 
one has to show that the resulting system of linear equations, which will have a 
sparse coefficient matrix, can be solved by iterative methods, and, finally, the stability 
of the method has to be investigated. 

The advantage of methods which lead to coefficient matrices which are of positive 
type is that only one problem is left to deal with. Once one has proven the con- 
vergence of the method, in which proof the fact that the matrix is of positive type 
plays a crucial role, it can be concluded at once from the Stein-Rosenberg theorem 
[7] that the Jacobi and Gauss-Seidel methods are both convergent, and it can also 
be seen that the stability is guaranteed. 

II. An 0(h3) Finite-Difference Operator for 0/an. Bramble and Hubbard 
[3] are the first to have given. an 0(h2) approximation to the third boundary value 
problem, using an 0(h2) approximation to 0/9n. Before this, a convergence proof 
had only been given once, for an 0(h) approximation, in a paper by Batschelet 
[8]. We shall now first inspect the operator of Bramble and Hubbard and give a 
different derivation of their results, which can then be extended to yield an 0(h3) 
operator. 

The basis on which Bramble and Hubbard's proof rests, which also determines 
the extent to which their results are valid, is the question if and under what circum- 
stances the system 
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3 

ajyi = 1, 

3 

(2.1) E aixi[ + yi(a(P) + K(P))] = 0, 

3 

[ajx2 -_y2] = 0, 

X =1 

has a nonnegative solution ai, under certain assumptions for a and K, and with 
xi, yj satisfying 

4E > xi > Yi + e > 2E, 

(2.2) 4E> -X2 > Y2 + E > 2E, 

6E > y3 > IX31 + 5E. 

a is the constant mentioned in (1.5), K is the signed curvature of the boundary in 
the point under consideration (see [3]), and e is a given positive constant, dependent 
on h, later chosen to be 3h/2. 

They show, by giving bounds for the determinants connected with a slightly 
modified system, that the a, satisfy the inequality 

(2.3) > > h 
I - (84 la + Kl[)h (2.3) a~~~ > L96 + (756 la + Klm)hJ 

where jla + KlM = maxp, c. Ia(P) + K(P)j, which places a rather heavy restriction 
on h to make the ai nonnegative. 

We shall now give a new proof for the contention that the ai satisfying (2.1) are 
nonnegative, provided h is chosen sufficiently small. It will turn out that we shall 
have to place hardly any restriction on h, apart from 

(2.4) h < 4/51 K 

which should already have been imposed for other reasons (see [3]); K is the maximum 
positive curvature of C1. 

We call a(P) + K(P) = q and write (2.1) as 

Y1 Y2 Y3 ]a, 

(2.5) xl(1 + qyl) X2(1 + qY2) X3 + qY3) a2 0 

xi2 _yi X2 -Y2 X3 -Y3 _ a3_ _0_ 

From (2.2) it is clear that all Yi > 0. This implies that the first equation in (2.1) can 
always be satisfied with positive ai by appropriate scaling, without losing the positivity 
of the a.. The only remaining condition now is that the vector a (with a1, a2 and a3 
as its components) is perpendicular to the plane spanned by the vectors 

xj(1 + qyl) XLi - Y 

2 2 
X2(1 + qY2) and X2 Y2] 

_x3(1 + qy3)- X3 y3- 
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A nonnegative vector a with this property can always be constructed if there is no 
vector in the above-mentioned plane with the same sign for all its components. 

We may consider, without loss of generality, the vector with components 

(2.6) Xxi(I + qy ) + (x4 -_y) i = 1, 2, 3. 

We have to prove that this vector has, for any X, two components of opposite sign. 
We shall discuss two cases, depending on the sign of q. 

First, we consider the case q 2 0; this case occurs very often, for instance, for 
all convex regions R. Let the first two components of (2.6) have the same sign, other- 
wise our assertion has already been proved. It then follows directly from (2.2) that 
both are positive. Now suppose that the third component is also positive. This clearly 
implies Xx3 > 0. Without loss of generality, we take both x3 and X > 0. From (2.2) 
then follows immediately that 

(2.7) X(1 + qy3) > 35e 

has to be true and therefore also 

(2.8) X(1 + qyj) > 5e, i = 1, 2, 

which leads to a contradiction, because under (2.8) the first and second components 
cannot both be positive. Therefore, the third component is negative, which is what 
we wanted to prove. 

Now consider the case q < 0. We shall conduct the proof along similar lines as 
in the first case. Again, we only have to inspect the case where the first two com- 
ponents have the same sign. Clearly, we have to prevent (1 + qyj) from becoming 
zero for i = 1, 2, otherwise we will not be able to arrive at a contradiction, because 
the first and second components will then be positive, irrespective of the value of X. 
We therefore take h so small that, with e = o(l) as h -+ 0, 

(2.9) 1 + 3eq > 0. 

Then, again, the first two components are positive, and we must have 

(2.10) 1XI < 15e/4(1 + 3eq). 

Assuming that the third component is also positive, we arrive at 

(2.11) [XI > 35e 

using the fact that 1 + qy3 > -1. The relations (2.10) and (2.11) lead to a con- 
tradiction if 

(2.12) 1 + 3eq _ 3/28, 

which does not violate our earlier condition (2.9). Taking e = 3h/2 as in [3], (2.12) 
yields 

25 1 
(2.13) h < 25. - 

We have therefore proved our assertion under this condition. 
We now have shown that the system (2.1) always has a nonnegative solution, 

either under the earlier condition (2.4) alone, or under (2.4) and (2.13). 
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Both conditions say that h may not be too large compared to the radius of cur- 
vature, which is quite natural. 

We shall now extend the above-mentioned method to construct a positive type 
0(h3) approximation to the operator 0/On. Throughout, we shall assume that a 
square net with mesh width h is placed over the region R. 

We consider an arbitrary point 0 on the boundary C1, where C1 is sufficiently 
smooth, and introduce two coordinate systems with origin 0: 

(a) a right-handed Cartesian coordinate system, with the x-axis tangent to C1 
at 0, and the positive y-axis along the inward-directed normal at 0, 

(b) geodesic normal coordinates with s the arc-length along C1 and n the outward- 
directed normal. 

This situation is given in Fig. 2.1 with ) = 0 in the point 0. For a sufficiently 
often differentiable function v, the following relations hold on C1: 

(2.14) V8 = Vx Cos + v vf sin4), 
vn = v. sin 4 - v cos 4. 

Subscripts denote the indicated partial differentiation. 

I on 

Y 

Cl 

FIGURE 2.1. Situation of the Coordinate Systems 

Taking ) = 0 and differentiating further, we obtain the following relations between 
the various partial derivatives in the point 0: 

(2.15) x= .V8S) v8 = -V, V = -vA8 + Kyv, 
-V~xz = (Vn8 - Kv.). + K(vyy - v.). 

By using the same technique as in [3], now using four points instead of three, and 
taking Taylor expansions including the third-order terms, we obtain the relation 
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4 

ai {v(Pi) - [1 + xiya,(O) + 6(3x~yi - y3)a.(O)]V(O)} 
i =1 

4 

(2.16) - -Vn(O) + ? ai{ [2Yi2- -(3X2 3) K(O)]Av(O) 
T=1 

- Xjyj(vn + oav),(O) - 6(3x Yi y_)(v + av)*(O) 

+ 2XOY2(AV)x(O) + Jy3(Av),(O)} 

+ O(a h4) 

between the boundary function v and some of its derivatives in the boundary point 
o and the values of v in four interior points Pi. 

We want to show that it is possible to choose the Pi so that ai > 0, for 
i= 1, * * , 4, because this will be useful in later applications. Apart from the fact 
that they must be chosen to satisfy this condition, the Pi must satisfy two further 
requirements: first, that they lie in R and, secondly, that they lie in the neighborhood 
of the point 0. 

Instead of 
4 

Z aI{yi + 1(34Xy -3y)(a + K)K} = 1, 

4 

Z ai{xi + xy,(ja + K) + 1(3Xtyi -iy)(2a, + K.)} 0, 
(2.17) 

4 

? ai{ (x2 - 2y) + 3(3Xtyi -_y3)(a + 3 K)} = 0, 
Z=1 

4 

a,{X3 - 3xiy2} = 0 
1 = 1 

(where a, K and their derivatives are taken in the point 0) by which relations the ai 
are defined, and which are used in [4] to derive (2.16), we consider the approximating 
system 

z=1~ 
i= 1, 

= 0, 
(2.18) =1 

4 

Z ca(x2 - y2) = 0, 

4 

? ai(X3i -Xyi2) = o. i =1 

The solution di of (2.18) will be close to a,, since the xi and yi are small. We write 
(2.18) in matrix form as 

Y1 Y2 Y3 Y4 a, I 

(2 . 19) x1 X2 X3 X4 .7 2 = 0 
(2.19)a 

x - y X2 y2 X3- Y3 X4-Y4 a3 0 

_Xi - 3xjY1 2 x3- 3X2Y2 X3 - 3X3Y32 X4- 3X4y4- -a4- -0 
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We shall now make a definite choice for the Pi = (xi, yi), so that 

3E > xl > y1 + e- 2 

(2.20) 3E _ -x2 _ Y2 + E > 2E, 

3E > y3 > X3 + E > 2e, 

3E > y4 > -X4 + 
E 

_ 2E. 

Geometrically, this means that in Fig. 2.2, P1 E I, P2 C II, P3 C III and P4 C IV. 

x 

t A 

L I A l0 

FIGURE 2.2. Position of the Points Pi 

It is shown in [4], using the same method of proof as was used above, that (2.18) 
always yields a positive set of di when the Pi satisfy (2.20), which means that a non- 
negative set of a, can be found for (2.17). 

It is possible to find an upper bound for h, below which (2.17) has such a non- 
negative solution. We shall however refrain from doing so. The upper bound we 
were able to find is so small as to be of little practical value; while, on the other hand, 
it is clear that it is certainly not optimal. For practical purposes, the absence of a 
definite bound on h poses no problems, because it is always discovered, if h is taken 
too large, by the occurrence of negative coefficients. In the computation of the 
examples given in [4], we never met with difficulties, taking any h satisfying the other 
conditions we imposed upon it. 

We now have for h sufficiently small a, > 0 i= 1, * *, 4, and also 

(2.21) ai < Mh-', i = 1, * , 4, 

with M a fixed positive constant. The last of these two inequalities follows from 
(2.17) and (2.20). 
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We now define an operator A,, for points P on C1 as follows: 
4 

(2.22) An V(P) = E aI{[I + xiyca8(P) + 1(3Xy -y)a88(P)] V(P) (pi) 
i-1 

where the a, are defined by (2.17) and the Pi satisfy (2.20). 
Using (2.16), it is now clear that the function u in (1.5) satisfies 

5|u(P) + a(P)u(P) 

4 

(2.23) - {g(P) + ? ai [(yx - *(3x yi-y)K(P))f(P) + xiyig.(P) 

+ 1(3x2Yt - Y3)g.,(P) + AXiy8f.(P) - 6Yfn(P)]} < k1h3 

with k, a positive constant. 
We have therefore found in (2.22) an 0(h3) approximation 8,, to the operator 

a/an, which we shall use in later sections to derive some error estimates for the 
various boundary value problems. 

III. An 0(h2) Positive Type Finite-Difference Laplace Operator on the Set C,*. 
In section I, we mentioned that, in the set C,*, we need an approximation Ah to the 
Laplace operator A with a truncation error of 0(h2). Ch* consists of the net points 
in R whose eight nearest neighbors are not all in R, roughly speaking, the net points 
near but not on the boundary. Bramble and Hubbard gave such an operator in [1]. 
We shall, however, not use it because its application results in a coefficient matrix 
which is not of positive type. To ensure that the resulting matrix has this useful 
property, it is necessary that in the formula 

(3.1) Ah V(Q) = Xi { V(Qi) - V(Q) 

which may be considered as the general form of the approximation we have in mind, 
all Xi are positive. This is not the case in the above-mentioned approximation in [1]. 
We have shown in [4] that derivation of an approximation with positive coefficients 
is possible and that, moreover, the use of this approximation for the Dirichlet prob- 
lem results in an upper bound for the discretization error which is never larger than 
that of Bramble and Hubbard. 

In Fig. 3.1(a)-{e) we give the five fundamentally different configurations we shall 
distinguish. Throughout, we assume the shaded region to be in R. We made no 
restriction to convex regions, although this might seem to be the case from the 
figures. The only assumption at this stage is that all ai in the above configurations 
satisfy 

(3.2) 0 < ai <1. 
In [4], we formulated further restrictions on the ai which are consistent with the 
restrictions imposed upon h in Section II, in the sense that they are always fulfilled. 

Since we stipulated that h is not too large compared to the radius of curvature, 
we may exclude occurrence of a situation as in Fig. 3.2(a) while the configurations 
given in Fig. 3.2(b)-(d) may be considered as special cases of the one given in Fig. 
3.1(b). In Fig. 3.2(c), (d) the quantity ac from Fig. 3.1(b) should be taken equal t6 1. 
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/xvh,y @h /x~y~h x~h, ye h 

y~~~~~~~~~~~~~~~~h 

Xx xhay xxvh~y 

x)y-h x+hy-h xy-h x~hy-h 

Y~~~alx h ea 

(c) (d') 

x@X1 h,/yithL2 

X x. y+ h~3 x 

x * hy - 

xv axhy-h 

( e ) 

FIGURE 3.1. Configurations Under Consideration 
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( c) (d) 

FIGURE 3.2. Special Cases of Fig. 3. 1(b) 

Apart from this, Fig. 3.1 gives all essentially different possibilities after appropriate 
rotation and reflection. For all five cases, we shall give a formula of type (3.1) with 
positive Xi. We shall see that, to attain this goal, a further subdivision of these five 
cases will be necessary. For each subcase, we shall give an inequality of the type 

(3.3) jAu(P) + F(Az9 AvJU(P) - tAU(P)j < cM~h' + O(h') 

with c a constant, the value of which shall be explicitly given, and M, defined by 
(I. 8). F denotes -an operator of the type h I aA. + OA, }. We here assume A.,u =fz 
and Agu = f, to be known in R. 

The derivation of the formulae (3.1) has as its underlying principle that a Taylor 
series expansion is made for each of the V(Qj) relative to the point Q. These are then 
multiplied by appropriate constants Xi and summed. The Xi must be so chosen that 
after this summation all third and lower derivatives vanish or can be expressed in 
terms of the Laplace operator and its derivatives. This gives a set of simultaneous 
linear equations for the Xi. The freedom that most of the thus obtained systems 
still leave in the choice of the Xi is used to make them positive and keep them as 
simple as possible. The formulae (3.3) follow after some computation from (3.1) 
by summing over the various fourth derivatives, again multiplied by the Xi, in the 
above-mentioned Taylor expansions. 

Case I. The point configuration for this case is given in Fig. 3.1(a). We define 
Ah as 

Ah V(X9 A) = Ah -2 {X1 V(X + h, 9 ) + X2 V(X, Y- h) + X3 V(X + h , y + h) 

(3.4) + X4 V(X - h, y - h) + X5 V(x + h9 y - h) 

+ )X6 V(X9 Y + aelh) + )X7 V(X - a2h, y) -8 V(X9 Y)) 
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with 

2(2 + al)(2 + ) 
2) 2(2 + a2)(2 + a2) 

- 2 + (2 + a2) 
= (1 + a) 

3 = (2 + ai)(1 - a2), 4 = (2 + a2)(1 - a1), 

X5 = 4 - a1 - a2 - 2a1a2 , 

6(2 + a2) 6(2 + a,) 
al(l + a1) -a2(1 + a2) 

6(a2+ a 2 + 2a1 + 2q2) I 

X8 = I p_ I__ a1a2 8 + a1 t a2 - a1a2 

For a1 = a2 = 1, 4, becomes the ordinary five-point Laplace operator. For 
u G C'5'(R), we have 

(3.5) IAu(P) - hIAX3zAu(P) + hAX4Au(P) - 'Ahu(P)I -? T M4h2 + 0(h3). 

Case II. The point configuration for this case is given in Fig. 3.1(b). We define 
4h as 

Ah V(X, y) = hV2{X1 V(x + h, y) + X2 V(X, y - h) + X2 V(X, y + h) 

(3.6) + X3 V(x + h, y + h) + X3 V(x + h, y - h) 

+ X4 V(X - a1h, y)- X5 V(x, y)} 

with 

2(2 + a 2) 2 + a, 1 -a, 
3(1 + a)' = 3 3 

2 2(3 + 2a, + a 2) 

al(1 + a,1) 3a1 

For u C CO5)(A), we have 

(3.7a) IAu(P) - A3Au(P) - Ahu(P)l < 3M4h2 + 0(h3) 

or, if a1 = 1, and we have the ordinary five-point operator 

(3.7b) I1u(P) - Ahu(P)l -< 6M4h2 + 0(h3). 

Case III. The point configuration for this case is given in Fig. 3.1(c). We define 
Ah as 

4h V(X, y) = Ah 2{X5 V(x, y- h) + X6 V(x + h, y) + X7 V(X + h, y - h) 

(3.8) + Xi V(x + h, y + a1h) + X2 V(x, y + a2h) 

+ X3 V(x - a3h, y) + X4 V(x - a4h, y - h) - X8 V(X, Y)} 

with 

-i1 = (1 + {3 - 2a3 - a4 - a2a3+ 2a4 
al(1 + a,) 

a212 a)16 + 2a3 + a4 + aia3 - aa 
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X3 3(1 + ) {6+ 2a2+ a + a2a4 - aa4} 

4 = (1 + ) {3 - 2a2 -a, -a2a3+ a1a3}, 

5 = a2X2 - (1 + a4)X4, X6 = a3X3 - (1 + a1)X1, 

7 = a1X1 + a4X4, 8 = (1 + a2)X2 + (1 + a3)X3, 

2 
9 + (a1 - a2)(a3 - a4) 

It is shown in [4] that, as in the preceding and following cases, all Xi and tt are non- 
negative, which is not always obvious, under no further restrictions than the ones 
imposed upon h in Section II. For u E C"5'(A), we have 

ALP' ~a1(1 + a,) La4(1 + a4) 
(3.9) -U(P)-h '( 2 Xi A. u(P) + hA 2 X4AVU(P) - AhU(P) 

< :J9 M4h2 + O(h3). 

Case IV. The point configuration for this case is given in Fig. 3.1(d). We first 
formulate two further conditions: 

(3.10) 1 - a 2 - 3a4?-O 

and 

(3.11) 3a1(1 - a1)(a2- a3) + (1 - a2)(1 + a1)(2 - 23 -5a1 + a1t3 + al) _ 0. 

The origin of these complicated conditions can be found in [4]. We now subdivide 
this case: 

(a) (3.10) is valid. 
(b) (3.11) is valid and (3.10) is not. 
(c) Neither (3.10) nor (3.11) is fulfilled. 
(a) We define Ah as 

Ah V(x, y) = A -22{X5 V(x + h, y) + X6 V(x, y - h) + X7 V(x + h, y - h) 

(3.12) + Xo V(x + h, y + h) + X2 V(X, Y + a2h) 

+ X3 V(x - a3h, y) + X4 V(x - a4h, y -h) - X8 V(X, Y)} 

with 

Xo = 3 - 2(3 - a4 - a2a3 + a2a4, X2 6(2 + a3) 
a2(1 + a2) 

X = -2(2 + a4)(1 -(a2) + 18 X _ 2(1 - a2)(2 + a3) 

a3(1 + a3) a4(1 + a4) 

X5 = a3X3 - 2Xo, Xo = a2X2 - (1 + a4)X4, 

X7 - Xo + a4X4, X8 = (1 + a2)X2 + (1 + a3)X3, 

9 + (1 - a2)(a3 - a4) 
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For u E C (R), we have 

(3.13) IAu(P) - h/A0AoAu(P) + h.t(l - a2)(2 + a3)AU(P) - AhU(P)l 

< 16M4h2 + O(h 3) 

(b) We define Ah as 

Ah V(x, y) = Ath 2{X5 V(x + h, y) + X6 V(X, y - h) + X7 V(X + h, y - h) 

(3.14) + Xo V(x + h, y + h) + Xi V(x + aih, y + h) 

+ X2(X, Y + a2h) + X3 V(X - a3h, y) - X8 V(X, y)} 

with 

X= a3(1 + a3)a2(1 + a2) 

*{3a(1 - a1)(a2 - a3) + (1 - a2)(1 + al)(2 - 2a3 - 5a, + a1a3 + al)}, 

Xi = 2a2(1 - a2)a3(1 + a3)(2 + a3)(1 + a2), 

X2= 6a1(1 -a1)a3(1 + a3)(2 + a3), 

X3= 2a2(1 + a2)(1 - a1){(6 - a1)(1 + a1)(1 - a2) + 3a1(2 + a2)}, 

X5= a3X3 - 2Xo - 2a1Xl, 

X= (1 - a1)X1 + a2X2, 

7= X0 + a1X1, 

8= 2(1 - a1)X1 + (1 + a2)X2 + (1 + a3)X3, 

= 2Xo + 2X1 + a2(1 + a2)X2 

For u C C(5'(R), we have 

(3.15) IAu(P) - hAX7Azu(P) + 2h a(1- a)XAhu(P) -Ahu(P)I < M4h2 + 3(h3). 

(c) It is not certain whether this case can actually occur under the restriction 
we have already made upon h. Anyway, it is unlikely that we shall meet it in practical 
problems. For the sake of completeness, we shall show that a satisfying definition 
for Ah can be given in this case also. We shall call the operator of Case IV(a) A (a) 

and that of Case IV(b) A ('). We now define Ah as 

(3.16) Ah V(P) = kaAh V(P) + kbAh V(P). 

ka and kb are two constants, satisfying k a + kb = 1 and further so chosen that the 
coefficient X 6 of V(x, y - h) in (3.16) is zero; ka and kb are thus both positive. The 
coefficients Xi in (3.16) are 

Xi = kaX a) + kbX b ) i = 0, * * 7, 

using an obvious notation. Clearly, a formula of type (3.3) can also be given, which 
is a linear combination of (3.13) and (3.15). 

Case V. The point configuration for this case is given in Fig. 3.1(e). Its occur- 
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rence in practical computation can almost certainly be prevented by a suitable choice 
of h; for completeness sake it is included. 

We define Ah as 

AAh V(X, y) = uh 2{X6 V(x + h, A) + X7 V(X + h, y - h) + X8 V(x + h, y + h) 

(3.17) + Xi V(x+alh, y+h) + X2 V(x, Y+a2h) + X3 V(X-a3h, y) 

+ X4 V(X, Y - a4h) + X5 V(x + a,5h, y - h) - X, V(x, y)} 

with 

1 + 3a,5 -2 1 + 3a1 - A1 = -- -, 
2 

)2 = 0 
1 -aC1 a,, 

14- + 30a5 -oZ2 
1- + 3ax, -o4 

4= +3,-,~ X5 = -+ ,-a 
a4 aZ5 

- (1 + 3a05 - 2)(3 + 2a, + 3a4- )+(1 + 3a, - )(3 + 2a5 + 3a2-5) 
03(1 + 0a3)(2 + a,3) 

7 = 2{a,(1 + a3)X3 - - -a1)X - 2aX2 - a4X4 - (1 + 2a5 - 5 

8 = 2 {a3(1 + a,3)X3 - (1 + 2a, - a2)X - X_ -a X4 - (1 _ -2)X5 

6 = a3X3 - a1XI - a5X,5 - X7 - 8 

X9 = (1 - a)XI + X2 + (1 + a3)X3 + X4 + (1 -aX5 

2 
a,3(1 + a,3)X3 - a(1 - a1)X1 - a5(1 -5)X5 

For u C C'5'(A), we have 

IAu(P) + hA(qX7 + X8 + a1X1 + a5>X5)AU(P) 

(3.18) + hA(a,5(1 - a5)) - al( - ))A0AU(P)- AhU(P)I 

< 24M4h2 + O(h3). 

Now that we have given all the necessary formulae, a few general remarks about 
them must be made. First, it must be pointed out that the inequalities of type (3.3) 
which were given above do not, for the most part, contain best possible constants. 
We contented ourselves with relatively easily obtainable bounds which suffice for 
the later use we have in mind. 

Secondly, there is the problem that most of the difference operators given above 
look rather complicated. It must therefore be emphasized that, in practical com- 
putation, the frequency of the use that is made of the various formulae is almost 
directly proportional to their simplicity. Let us take the unit circle as an example 
for R considering, for reasons of symmetry, only a quarter of its boundary. For 
h = 1/10, Ch* then contains fourteen points: eleven of type II, two of type IV(a) 
and one of type I. For h = 1/20, these numbers are twenty-seven of type 1I, six of 
type IV(a) and three of type I. The intricate formulae of type III, IV(b), (c) and V 
are not used at all; the relatively simple type II occurs in three-quarters of the tptal 
number of cases. 
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;Emphasis must also be put on the fact that, for our purposes, any approximation 
to A giving the desired truncation error will do as long as the resulting matrix is of 
positive type. The approximating operators given in this section and in Section II 
only serve as an illustration of the fact that such approximations can be given under 
quite general circumstances. In special cases, much easier methods leading to the 
desired results may be found. 

IV. The Third Boundary Value Problem. We shall now approximate the 
third boundary value problem (1.5) by a finite-difference analogue, using the operators 
given in Sections II and III. Consider the approximation 

-Ah U(P) = f *(p), P E Rh + Ci1h + C A 

(4.1) 5a U(P) + a(P) U(P) = g*(p), P E Clh, 

U(P) = g1 (P), P C C2h, 

with Ah defined by (1.6) for P E Rh, by (1.10) for P E C2h* and by the appropriate 
operator defined in Section III for P E Clh*; a, is defined by (2.22). The sets Rh, 

Cih and Cih*, i = 1, 2, are as in Section I. We already mentioned the division of Ch* 

into two sets Clh* and C2h* but have not yet discussed it in detail. Points lying in 
Ch* have a part of the boundary lying inside their nine-point molecule. A point 
P C Ch* will be in Cxh*, if this part of the boundary entirely belongs to Ci, for i = 1, 2. 
If the part of the boundary lying inside the nine-point molecule does not belong 
exclusively to C1 or C2, the corresponding point P is in C2h* if C2 cuts a main axis or 
if C2 cuts the boundary of the molecule, while the main axes are entirely in R, and 
otherwise in Cih*. 

The functions f*(P) and g*(P) in (4.1) are defined as 

f*(P) = AP) + Af(P), P E Rh, 

(4.2) f*(P) = f(P) - hF(P), P E C1*h , 

f (P) = f(P), P E C*2h, 

g*(P) = g(P) + F1(P), P C C1 , 

with hF(P) = F(AX, Ay)u(P) (see (3.3)) and F1(P) a known function of f, g and their 
derivatives defined by considering 

(4.3) I5"u(P) + a(P)u(P) - g(P) - F1(P)I ? k1h3 

as an equivalent notation for (2.23). 
The matrix of the system (4.1) is of positive type provided 

4 

(4.4) j ai[xiyia.(P) + 1(3xiyi -yz)a88(P)] + a(P) ? 0 

is true for all P ( Clh. Since we stipulated that a is bounded away from zero, (4.4) 
can always be satisfied for h chosen sufficiently small. This matrix then possesses a 
nonnegative inverse. The general idea behind the following proof concerning the 
magnitude of the discretization error has been taken from Bramble and Hubbard 
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[3]; since we necessarily work with a different discrete Green's function, the entire 
detailed proof has to be given again for this case. As we have shown in [4], the use 
of a different and more complicated Green's function may severely complicate the 
proof of corresponding theorems. We now introduce the discrete Green's function 
Gh(P, Q) for the region R under consideration, defined by 

-AhGh(P, Q) = h26(P, Q), P E Rh + Ch + C 2, 

(4.5) b.Gh(P, Q) + a(Q)Gh(P, Q) = h15(P, Q), P E Clh, 

Gh(P, Q) = h 15(P, Q), P C C2h, 

with Q E Rh + Clh* + C2h* + Clh + C2h. The symbol b(P, Q) denotes the Kronecker 
delta. Here, and in the following sections, we assume the operators Ah and 8,, to be 
working on the first parameter. Clearly, Gh(P, Q) is nonnegative, being the inverse 
of the coefficient matrix of (4.1), multiplied by a nonnegative diagonal matrix. 

We now have, for any mesh-function V, 

V(P) =h E Gh(P, Q)[-Ah V(Q)] 

(4.6) QERh+Clh*+C2h* 

+ h E Gh(P, Q)[3,, V(Q) + (x(Q) V(Q)] + h E Gh(P, Q) V(Q) 
Q C % QEC2h 

which follows from the fact that the coefficient matrix of (4.1) is nonsingular. 
It must be pointed out that we used a definition slightly different from the one 

used by Bramble and Hubbard [3]. This difference consists of the inclusion of the 
factors h-1 in the second and third lines of (4.5). The reason for this is, that (4.6) 
is now more in agreement with the continuous representation of the solution of (1.5) 
by means of kernel functions 

u(P) =ff G1(P, Q)f(Q) da + f G2(P, Q)g(Q) ds + f G3(P, Q)g1(Q) ds. 
R 

We first take V(P) = I in (4.6), which yields 

(4.7) h E Gh(P,Q)? 1. 

We now suppose that a function 4 E C'3'(R) exists satisfying 

(4.8) -Aq _ 1 inR, 

O4/On + aq _ 1 on C1. 

Then, for sufficiently small h, 

-Ah4(P) >- 2 P E Rh + C1h + C A 

6,,0(P) + a(P)4(P) - 2, P C Clh. 

If we now take V(P) = 4(P) in (4.6), we obtain 

(4.9) h , Gh(P, Q) + h , Gh(P, Q) < 4 |I M 
QERh+Cih*+C2h* QEC, h 

with f01m = maXPERh+ C ,*+ C 2h + C+C 2h IOA. 

We now introduce the sets Clh** and C2h**, the subsets of Clh* and C2h* where 
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A, is represented by the ordinary five-point formula. We now define a function 
W(P) by W(P) = 0 on Ch, W(P) = 1 in Rh, in C1,** and C2,**, and in those points 
of (Clh* U C2h*) - (Clh** U C2h**) which do not belong to a star, the centre of 
which is in Clh** U C2h**. In the points of (Clh* U C2h*) - (Clh** U C2h**) which 
belong to a star, the centre of which is in Clh** U C2h**, W(P) = 7/8. We can 
then show 

-Ah W(P)> _ h P p Ci*, + C*, 

-Ah W(P) _ 0, P C Rh. 

Taking V(P) = W(P) in (4.6), we have 

1 > h2 E G(P, Q)[-Ah W(Q)] + h E Gh(P, Q)[In W(Q) + a(Q) W(Q)] 
Q CEh* C~h* QEC h 

or 

(4.10) E Gh(P, Q) 4 + 4 max F ai(Q)lh E GA(P, Q). 
Q-Clh*+C2h* Q-CCh Li= QClh 

We also have (see (2.17)) 
4 

1 = : ai Iy, + 1(3X2iy - 3y)(a + K)K} 
i =1 

(4.11) - [~, ai] min{yj + 6(3x2yi - 3)(a + K)K} 

> [ a ai] + O(h >} [' ai] 

for sufficiently small h, for any P E Clh. We now have = ai < 3h1 and this 
yields, with (4.9) and (4.10), 

(4.12) h E Gh(P, Q) < 4(h + W Ictm)I 
Q ECh*+ C22h* 

We shall derive a sharper bound for Q C C2h*. Take W(P) = 0 on Ch, W(P) = 1 
everywhere in Rh + ClA* + C2h** and in those points of C2h* - C2h** which do 
not belong to a five-point star, the centre of which is in C2h* * . In the points of C2h* - 

C2h** which belong to a five-point star, the centre of which is in C2h** W(P) = 7/8. 
We then have 

-Ah W(P)> _hV P C C, 

-Ah W(P) 0, P C Rh + Clh 

V(P) = W(P) in (4.6) then yields 

(4.13) Gh G(, Q) <4. 
Q E C 2 h* 

We can now formulate the following theorem: 
THEOREM 1. Let u C C'5'(R) be the solution of (1.5) and suppose that a function 

4 satisfying (4.8) exists. Then we have 

(4.14) max le(P)I < kh3 
P 
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with e(P) = u(P) - U(P), P ? Rh + Clh* + C2M* + Clh + C2M, U being the solution 
of (4.1). The constant k used in (4.14) depends only on u and 4 but not on h. 

Proof. In (4.6), take V(P) = e(P), then 

e(P) h E Gh(P, Q)[-AhC(Q)] 
QERh+ Cl h*+ C2h* 

+ h E Gh(P, Q)[5nE(Q) + a(Q)e(Q)]. 

Since Gh(P, Q) > 0, we have 

E(P) I < ah2 Gh(P, Q)1* max I Ahe(Q)! 
QERh Q ERh 

+ [h E Gh(P, Q)] max IhAhe(Q)I 
(4.15) -QECih* QEC2h* 

+ E Gh(P, Q)] max I h Ih2AE(Q) I 
QEC2h* QEC2h* 

+ Fh E Gh(P, Q)1. max I 6,5(Q) + a(Q)e(Q)I. 
L QECh QEC11, 

This immediately yields (4.14) using (4.9), (4.12) and (4.13) together with (1.9), 
(3.3), (1.11) and (2.23). 

For examples of an application of the theorems of these and the following sections, 
we refer to [4]. 

V. The Neumann Problem. In this section, we shall consider an O(h3Iln hj) 
approximation for the Neumann problem (1.3). The solution of (1.3), when it exists, 
is only unique up to an additive constant. This constant is usually determined by 
a normalization relation such as 

(5.1) fu do = 0, u ds = 0 or u(xo, yo) = O. 

We shall consider the problem solved once we have found one of the solutions to (1.3). 
We shall approximate the solution of (1.3) by 

Ah U(P) = f* (P), P E RI + Ch, 

(5 .2) An U(P) = g* (P)s P E Ch, 

U(O) = UO. 

The point 0 shall be a mesh point well in the interior of R, and we define Rh' as Rh - 0. 
The sets Rh, Ch* and Ch are as in Section I. The operator Ah is defined by (1.6) for 
P E R,' and by the appropriate operator defined in Section III for P E Ch*. an is 
defined by (2.22), which formula can now of course be written as 

4 

(5.3) 5.V(P) = > aiI V(P) - V(Pi)}. 

The functions f*(P) and g*(P) are, as in Section IV, defined as 
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f*(P) = f(p) + A~) -R 12f(P) P C Rh, 

(5.4) f*(P) = f(P) - hF(P), P C C*, 

9*(P) = g(P) + F1(P), P C Ch, 

with F(P) and F1(P) as in (4.2); u0 is a given constant. It is easy to see that the coeffi- 
cient matrix of (5.2) is of positive type. 

We now define a discrete function N(P, Q) by 

-AhN(P, Q) = h 6(P, Q), P C R' + Ch,, 

(5.5) 65s N(P, Q) = h '6(P, Q), P C Ch, 

N(0, Q) 6(0, Q), 

for Q C Rh + Ch* + Ch, with b(P, Q) the Kronecker delta. Clearly, N(P, Q) > 0, 
while, for any mesh function V(P), 

V(P) = h 2 E N(P, Q)[-Ah V(Q)] 
(5.6) QERh'+ Ch* 

+ h E N(P, Q)[S. V(Q)] + N(P, 0) V(O). 
Qe=Ch 

A relation similar to (5.6) was given in (4.6). Taking V(P) = 1 in (5.6) yields 

N(P, 0) = 1, P C Rh + Ch* + Ch, 

which makes it possible to rewrite (5.6) as 

(5.7) V(P) - V(O) = h2 E N(P, Q)[- Ah V(Q)] + h E N(P, Q)[6S V(Q)]. 
QeRh, + Ch* QECh 

The following theorem is proved in [4]: 
THEOREM 2. Let u E C"5'(R) be the solution of (1.3) and let R be such that either 

its boundary has no corners, or a function 4 C Ct3F(R) exists, satisfying 

- AO > 1 in R, 

(5.8) 34/an > 1 on C - C1, 

d4/ anI < 61 on C1, 

where C1 is a smooth arc on C of nonzero length, whose endpoints are not corners. 
Then we have 

max le(P)j < kh 3 1in hi 
P 

with e(P) = u(P) - U(P), U(P) being the solution of (5.2), P C Rh + Ch* + Ch. 

The constant k depends only on u and 4 but not on h. 
Since this proof follows the same course as the proof given in [1], apart from 

certain complications due to the different nature of the Green's function under 
consideration, we shall give no further details here but refer once more to [4]. 

VI. The Dirichlet Problem. In this section we shall consider an 0(h4) ap- 
proximation for the Dirichlet problem (1.2) in which we shall use the operators 
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given in Section III. Bramble and Hubbard [1] have given several finite-difference 
approximations for this problem, the most accurate of which has an O(h4) discretiza- 
tion error. In the interior of the region under consideration, they use the nine-point 
formula (1.6), while near the boundary, where use of this formula is not possible, 
an approximation is used in which not all the coefficients of the points used in ap- 
proximating A for the central point have the same sign. Thus the resulting coefficient 
matrix is not of positive type. As we have seen in Section I, this means that it has to 
be shown separately that the system is solvable by iterative methods. Rockoff [9] 
has shown that the Jacobi- and Gauss-Seidel methods for this approximation con- 
verge. For the point SOR method, a range of relaxation factors can be given for 
which convergence is also proved. However, no details of these proofs are given in [9]. 

The approximation we propose to give here has also an O(h4) discretization 
error. The error bound obtained here is in general smaller than that of Bramble and 
Hubbard and under no circumstances greater. It has, moreover, a coefficient matrix 
which is of positive type. 

We approximate (1.2) by 

(6.1) -Ah U(P) = f *(P), p E Rh + Ch, 

U(P) = g(P), P C C7, 

The function f*(P) is defined as f(P) + h2Af(P)/12 and the sets Rh, Ch* and Ch are 
as in Section I. The operator Ah is defined by (1.6) for P C Rh, while for P E Ch* 

the appropriate formula from Section III is chosen. 
We then have the following theorem: 
THEOREM 3. Let u(P) C C"7)(A) be the solution of (1.2) and U(P) that of (6.1). 

We then have the following inequality for the discretization error e(P) = u(P) - U(P): 

(6.2) max 6c(P)i < hM d2M4 + 480 + O(h) 

jor P E Rh + Ch* + Ch- 

The O(h4) approximation of Bramble and Hubbard [1] cited above yields the 
discretization error 

412 Md2 (6.3) max le(P)l < h M4 + M0 + O(h)}. 

Apart from the fact that this method has a coefficient matrix which is not of positive 
type, comparison of (6.2) and (6.3) shows that our method has an upper bound which 
is never greater than that of Bramble and Hubbard, and may be up to a factor four 
smaller. 

Again, the details of the proof are similar to those in the earlier work of Bramble 
and Hubbard, and may be found in [4]. 

Rekencentrum der Rijksuniversiteit 
Landleven 1 
Postbus 800 
Groningen, The Netherlands 

1. J. H. BRAMBLE & B. E. HUBBARD, "On the formulation of finite difference analogues 
of the Dirichlet problem for Poisson's equation," Numer. Math., v. 4, 1962, pp. 313-327. 
MR 26 #7157. J 



FINITE-DIFFERENCE METHODS FOR POISSON'S EQUATION 391 

2. J. H. BRAMBLE & B. E. HUBBARD, "A finite difference analogue of the Neumann prob- 
leni for Poisson's equation," J. Soc. Indust. Apple. Math. Ser. B. Numer. Anal., v. 2, 1965, 
pp. 1-14. MR 32 #8516. 

3. J. H. BRAMBLE & B. E. HUBBARD, "Approximation of solutions of mixed boundary 
value problems for Poisson's equation by finite differences," J. Assoc. Comput. Mach., v. 12, 
1965, pp. 114-123. MR 30 #1615. 

4. H. VAN LINDE, High-Order Finite Difference Methods for Poisson's Equation, Thesis, 
Groningen, 1971. 

5. G. H. SHORTLEY & R. WELLER, "The numerical solution of Laplace's equation," J. 
Apple. Phys., v. 9, 1938, pp. 334-348. 

6. J. H. BRAMBLE & B. E. HUBBARD, "On a finite difference analogue of an elliptic 
boundary problem which is neither diagonally dominant nor of non-negative type," J. Mathe- 
matical Phys., v. 43, 1964, pp. 117-132. MR 28 #5566. 

7. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. 
MR 28 #1725. 

8. E. BATSCHELET, "Ober die numerische Auflsung von Randwertproblemen bei ellip- 
tischen partiellen Differentialgleichungen," Z. Angew. Math. Phys., v. 3, 1952, pp. 165-193. 
MR 15, 747. 

9. M. ROCKOFF, "On the numerical solution of finite difference approximations which 
are not of positive type," Notices Amer. Math. Soc., v. 10, 1963, p. 108. Abstract #597-169. 


	Cit r28_c29: 
	Cit r29_c30: 
	Cit r35_c36: 
	Cit r32_c33: 


